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Lecture 9: September 25

We continue studying a polarized variation of Hodge structure of weight n on the
punctured disk ∆∗. We keep the notation V for the holomorphic vector bundle, ∇
for the connection, F pV for the Hodge bundles, and hV for the polarization. Recall
that we defined V as the space of flat sections of exp∗ V on the halfspace H̃ ={
z ∈ C

∣∣ Re z < 0
}

. The polarization induces a nondegenerate hermitian pairing

h : V ⊗C V → C, and the action by Z(1) induces a monodromy transformation
T ∈ End(V ), according to the rule

v(z − 2πi) = (Tv)(z).

From this data, we constructed the period mapping

Φ: H̃→ D,

which has the property that Φ(z + 2πi) = TΦ(z). (Remember that T ∈ GR, and
that the group GR acts on D.)

For a choice of half-open interval I ⊆ R of length 1, we also constructed the
canonical extension

Ṽ = O∆ ⊗C V,

and we saw that the connection on V extends to a logarithmic connection with

∇(1⊗ v) =
dt

t
⊗Rv.

It is also possible to run the entire construction backwards, starting from the
canonical extension. This has the advantage that the canonical extension is unique.
Starting from (V ,∇), let Ṽ be the canonical extension (for some choice of interval

I), and define V = Ṽ
∣∣
0

as the fiber over the origin. The residue of the connection

gives us an endomorphism R = Res0∇ ∈ End(V ), whose eigenvalues are contained
in I. (This only exists if the eigenvalues of the monodromy transformation have

absolute value 1, of course.) As I mentioned last time, Ṽ has a distiguished trivi-
alization

O∆ ⊗C V ∼= Ṽ ,

such that the logarithmic connection takes the simple form

∇(1⊗ v) =
dt

t
⊗Rv.

(To construct this trivialization in general, one has to solve a system of ordinary
differential equations.) For every vector v ∈ V , we can now construct a flat section

of exp∗ V on H̃, by defining

s̃v(z) = e−zR(1⊗ v) =

∞∑

j=0

(−1)jzj

j!
⊗Rjv.

This is flat because (exp∗∇)(1⊗ v) = dz ⊗Rv. The resulting mapping

V → H0
(
H̃, exp∗ V

)exp∗∇
, v 7→ s̃v,

is an isomorphism. Since

s̃v(z − 2πi) = e2πiRe−zR(1⊗ v) = e2πiRs̃v(z),

the monodromy transformation is therefore again T = e2πiR.
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Hodge bundles and canonical extension. Either way, the canonical extension
leads to a preferred trivialization

O∆∗ ⊗C V ∼= V

of our vector bundle, which gives us another way to view the Hodge bundles F pV
as subbundles of a trivial bundle with fiber V . Remembering that the compact dual
Ď parametrizes all filtrations of the given type, we get a holomorphic mapping

Ψ: ∆∗ → Ď.

It is not hard to describe Ψ in terms of the period mapping Φ: the two trivializations
(of exp∗ V by flat sections, and of V from the canonical extension) are related by
the factor e−zR, and therefore

Ψ(ez) = e−zRΦ(z).

Here we are considering Φ(z) ∈ D as a point in Ď, and act by e−zR ∈ GL(V ); note
that e−zR only belongs to GR when z is purely imaginary. We can also see directly
that the mapping z 7→ e−zRΦ(z) descends to ∆∗, because

e−(z+2πi)RΦ(z + 2πi) = e−zRe−2πiRTΦ(z) = e−zRΦ(z).

The first result that Schmid proves is that the canonical extension is a good place
to compare the different filtrations: the limit limt→0 Ψ(t) exists.

Theorem 9.1. The mapping Ψ: ∆∗ → Ď extends holomorphically to ∆.

The main ingredient in the proof is the distance decreasing property of period
mappings. The limit Ψ(0) ∈ Ď is a well-defined filtration on V ; unfortunately, it is
basically never the Hodge filtration of a polarized Hodge structure.

Polarization and canonical extension. In order to understand why Ψ(0) does
not give us a polarized Hodge structure, we need to look at the pairing. Suppose
that, in addition to (V ,∇), we also have a nondegenerate flat hermitian pairing

hV : V ⊗C V → C∞∆∗ .

If we let V be the fiber of the canonical extension over the origin, then just as
before, we get an induced hermitian pairing

h : V ⊗C V → C,

as follows. For any v ∈ V , we have a flat section e−zR(1⊗ v) of exp∗ V , and since
the pairing hV is flat, the function

z 7→ (exp∗ hV )
(
e−zR(1⊗ v′), e−zR(1⊗ v′′)

)

is constant on H̃. Define h(v′, v′′) ∈ C to be that constant value. Since hV is
nondegenerate, the same thing is true for h.

Lemma 9.2. For every v′, v′′ ∈ V , one has h(Rv′, v′′) = h(v′, Rv′′).

Proof. The proof is similar to that of Lemma 8.1. The function that we used to
define h(v′, v′′) is constant, and therefore

h(v′, v′′) = h(e2πimRv′, e2πimRv′′)

for every m ∈ Z. If we expand the right-hand side into a power series in m, we get

h(v′, v′′) = h(v′, v′′) +m
(

2πih(Rv′, v′′)− 2πih(v′, Rv′′)
)

+ · · ·

Since this has to hold for every m ∈ Z, we get the result. �
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To analyze the behavior of ezR, it is helpful to work with the (additive) Jordan
decomposition

R = RS +RN

of the endomorphism R ∈ End(V ) into its semisimple (= diagonalizable) and nilpo-
tent parts. You may remember from linear algebra that RS and RN can both be
written as polynomials in R, and therefore commute with each other. We also get

h(RSv
′, v′′) = h(v′, RSv

′′) and h(RNv
′, v′′) = h(v′, RNv

′′).

The eigenvalues of RS are real and contained in the interval I; since RS is diago-
nalizable, it gives us a decomposition

V =
⊕

α∈I
Eα(RS).

This decomposition is orthogonal with respect to h.

Note. The point of the Jordan decomposition is that

ezRv = ezRSezRN v = eαzezRN v

when v ∈ Eα(RS). The first factor is exponential in z, whereas ezRN is polynomial
in z (because RN is nilpotent); the Jordan decomposition allows us to see the
difference clearly.

That said, let us now see how the flat pairing hV looks like in the trivialization
of V given by the canonical extension. For the sake of clarity, I am going to replace
z by the equivalent expression log t. Here we go:

hV (1⊗ v′, 1⊗ v′′) = h
(
eR log tv′, eR log tv′′

)
= h

(
v′, eR log|t|2v′′

)
= h

(
v′, e−L(t)Rv′′

)
.

I used Lemma 9.2, and the fact that h is conjugate-linear in the second argument, to

move eR log t over to the second argument as eR log t. I also introduced the function

L(t) = − log|t|2,
which has the advantage of being positive on ∆∗. Remember that the different
eigenspaces Eα(RS) are orthogonal under h. Let

v′ =
∑

α∈I
v′α and v′′ =

∑

α∈I
v′′α

be the eigenspace decompositions of v′ and v′′; then

e−L(t)RSv′′α = eα log|t|2v′′α = |t|2α · v′′α.
Continuing from above, we have

hV (1⊗ v′, 1⊗ v′′) =
∑

α∈I
h
(
v′α, e

−L(t)RN e−L(t)RSv′′α
)

=
∑

α∈I
|t|2αh

(
v′α, e

−L(t)RN v′′α
)

=
∑

α∈I
|t|2α

∞∑

j=0

L(t)j

j!
(−1)jh

(
v′α, R

j
Nv
′′
α

)
.

When t→ 0, this expression is all over the place: some of the terms |t|2αL(t)j are
going to zero, some to infinity, and they all do so at different rates. This explains
why one cannot expect to get any sort of Hodge structure in the limit: we have the
limit filtration Ψ(0) ∈ Ď, but our Hodge structures are supposed to be polarized,
and the pairing is very far from converging to anything.

For an analyst, it is of course completely clear what should be done: one should
“renormalize” the pairing, meaning switch to a different reference frame in which
the pairing also behaves nicely. We will see in a moment how to do this. For now,
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let me first make a few other observations. The formula for the pairing shows that
the eigenspace decomposition

V =
⊕

α∈I
Eα(RS)

of the semisimple part of R is important, because it controls the leading term |t|2α
(which of course dominates any power of L(t) as t→ 0). We can easily renormalize
this part of the expression by dividing by |t|α on the α-eigenspace. For the terms
involving L(t), the situation is less clear.

To see what can happen, choose ` ≥ 0 in such a way that R`+1
N = 0 but R`N 6= 0;

recall that RN is nilpotent. Also, let me suppose that v′, v′′ ∈ Eα(RS), and only
concentrate on the expression

(9.3)

∞∑

j=0

L(t)j

j!
(−1)jh(v′, RjNv

′′).

For general v′, v′′ ∈ V , the coefficient h(v′, R`Nv
′′) will be nonzero, and so we do get

a term with L(t)`. But if either v′ or v′′ happens to lie in the subspace kerR`N , then
the coefficient is zero, and the highest power of L(t) that can show up is L(t)`−1.
In other words, if we are interested in the rate of growth of (9.3), we naturally end
up with a filtration

V ⊇ kerR`N ⊇ · · ·
where the typical rate of growth is L(t)`, which drops to L(t)`−1 on the subspace
kerR`N , etc. The filtration that we end up with here is called the monodromy
weight filtration. Let me give the definition first, so that we know what we are
talking about.

Proposition 9.4. Let N ∈ End(V ) be a nilpotent endomorphism of a finite-
dimensional complex vector space V . Then there is a unique increasing filtration
W• = W•(N) of V with the following two properties:

(a) For every j ∈ Z, one has N(Wj) ⊆Wj−2.
(b) For every j ≥ 1, one has an isomorphism

N j : grWj
∼=−→ grW−j ,

where grWj = Wj/Wj−1.

Proof. Define ` ∈ N by the condition that N `+1 = 0 but N ` 6= 0. The proof is by
induction on `. If ` = 0, then N = 0, and so we can take W0 = V and W−1 = {0}.
In the general case, we always have an isomorphism

N ` : V/ kerN ` ∼=−→ imN `,

and so we should define W` = V , W`−1 = kerN `, W−` = imN `, and W−`−1 = {0},
to get (b) for j = `. Now consider the quotient Ṽ = kerN `/ imN `. The induced

endomorphism Ñ ∈ End(Ṽ ) satisfies Ñ ` = 0, and so W̃• = W•(Ñ) exists by
induction. For −` ≤ j ≤ `− 1, we now define Wj ⊆ kerN ` as the unique subspace

with Wj/ imN ` = W̃j . Since grWj
∼= grW̃j , this has all the desired properties. �

The subspaces in the monodromy weight filtration are certain (somewhat com-
plicated) expressions in kerN j and imN j , as the following examples show.
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Example 9.5. If N 6= 0 but N2 = 0, the monodromy weight filtration is

W1 = V

W0 = kerN

W−1 = imN

W−2 = {0}.
If N2 6= 0 but N3 = 0, the weight filtration is

W2 = V

W1 = kerN2

W0 = kerN2 ∩N−1(imN2) + imN2

W−1 = N(kerN2) + imN2

W−2 = imN2

W−3 = {0}.
Exercise 9.1. Prove the following properties of the monodromy weight filtration:

(a) For every j ≥ 1, one has kerN j ⊆Wj−1

(b) For every j ≥ 1, one has W−j ⊆ imN j .
(c) One has W−1 ∩ kerN = N(kerN2).

With the language now in place, let us return to the expression

∑̀

j=0

L(t)j

j!
(−1)jh(v′, N jv′′),

where N = RN . Let W• be the monodromy weight filtration of N ∈ End(V ); since
N ` 6= 0 and N `+1 = 0, we have W` = V , W`−1 = kerN `, etc. The maximal power
of L(t) that can appear is L(t)`, with coefficient (−1)`h(v′, N `v′′). In fact, it is not
hard to see that

(−1)`h(v′, N `v′′)

defines a nondegenerate hermitian pairing on V/ kerN ` = grW` . Now suppose that
v′, v′′ ∈ kerN `. Since the subspaces kerN ` and imN ` are orthogonal with respect
to h, we get an induced hermitian pairing h̃ on the quotient Ṽ = kerN `/ imN `,
still nondegenerate, and the expression from above simplifies to

`−1∑

j=0

L(t)j

j!
(−1)j h̃

(
ṽ′, Ñ j ṽ′′

)
,

where ṽ′ is the image of v′ in Ṽ . Now the highest power of L(t) that can appear is
L(t)`−1, and the expression

(−1)`−1h(v′, N `−1v′′)

defines a nondegenerate hermitian pairing on grW`−1. Continuing in this manner, we
see that the filtration by the maximal power of L(t) is precisely the positive part
of the monodromy weight filtration; the negative part shows up as the subspaces
on which the induced pairing is trivial in each case.

Renormalizing the pairing. Let us come back to the question of how to “renor-
malize” the pairing, in order to remove the different terms |t|2αL(t)j . I already said
that we should multiply by |t|−α on the α-eigenspace Eα(RS), to cancel out the
|t|2α. We also found that the generic behavior on Wj \Wj−1 is to have a term with
L(t)j , but to eliminate this, we need to have a decomposition

Wj = Ej ⊕Wj−1,
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so that we have a preferred subspace on which we can multiply by L(t)−j/2. In
order to simplify the formulas, it would also be good if the decomposition was
compatible with RS and with the pairing h. The following result, a special case of
the Jacobson-Morozov theorem, helps us out.

Proposition 9.6. It is possible to choose a semisimple operator H ∈ End(V ), with
integer eigenvalues, and the following three properties:

(a) For every j ∈ Z, one has Wj = Ej(H)⊕Wj−1.
(b) One has [H,RN ] = −2RN and [H,RS ] = 0.
(c) One has h(Hv′, v′′) = −h(v′, Hv′′) for every v′, v′′ ∈ V .

The condition [H,RN ] = −2RN means that RN maps Ej(H) into Ej−2(H), in
a way that is compatible with the monodromy weight filtration. The two operators
H and RN together determine a representation of sl2(C) in which

Y =

(
0 0
1 0

)
∈ sl2(C)

acts as RN . Moreover, RS is an endomorphism of this representation (because it
commutes with both RN and H).

The following sequence of exercises outlines a proof of Proposition 9.6.

Exercise 9.2. Let N ∈ End(V ) be a nilpotent endomorphism of a finite-dimensional
vector space. Denote by Σ(N) ⊆ End(V ) the set of all semisimple endomorphisms
H with integer eigenvalues, such that [H,N ] = −2N and Wj = Ej(H)⊕Wj−1 for
every j ∈ Z. Show that Σ(N) 6= ∅. (Hint: Choose a basis that puts N into Jordan
canonical form.)

Exercise 9.3. The vector space End(V ) also has a nilpotent endomorphism adN ,
defined as (adN)(A) = [N,A]. Show that

W`(adN) =
{
A ∈ End(V )

∣∣ A(Wj) ⊆Wj+` for all j ∈ Z
}
.

Deduce that if A ∈ End(V ) commutes with N and satisfies A(Wj) ⊆ Wj−1 for all
j ∈ Z, then A = (adN)(B) for some B ∈ ker(adN)2.

Exercise 9.4. Let H,H ′ ∈ Σ(N). Show that there is some B ∈ ker(adN)2 such
that H ′−H = (adN)(B). Conversely, show that if H ∈ Σ(N) and B ∈ ker(adN)2,
then also H + (adN)(B) ∈ Σ(N).

Exercise 9.5. Suppose that V comes with a nondegenerate hermitian pairing

h : V ⊗C V → C

such that h(Nv′, v′′) = h(v′, Nv′′) for all v′, v′′ ∈ V . For A ∈ End(A), denote by
A∗ ∈ End(V ) the adjoint with respect to h; thus N∗ = N . Choose any H0 ∈ Σ(N).

(a) Show that −H∗0 ∈ Σ(N), and deduce that H0 +H∗0 = (adN)(B) for some
endomorphism B ∈ ker(adN)2.

(b) Show that H = H0 + 1
2 (adN)(B∗) lies in Σ(N) and satisfies H = −H∗.

(c) Conclude that there exists a semisimple endomorphism H ∈ End(V ) with
integer eigenvalues, such that [H,N ] = −2N and Wj = Ej(H)⊕Wj−1 for
every j ∈ Z, and moreover h(Hv′, v′′) = −h(v′, Hv′′) for all v′, v′′ ∈ V .

Exercise 9.6. Finally, suppose that S ∈ End(V ) is semisimple, commutes with N ,
and satisfies S∗ = S. Show that one can arrange, in the conclusion of the preceding
exercise, that moreover [H,S] = 0. (Hint: Look at the eigenspaces of S.)
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Now H and RS are commuting semisimple endomorphisms of V , and so they
have a simultaneous eigenspace decomposition

V =
⊕

α∈I
j∈Z

Vα,j .

We will see next time that the divergent terms in the formula for the pairing all go
away if we multiply by |t|−αL(t)−j/2 on the subspace Vα,j .
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